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ABSTRACT 

A general life history population simulator, GXPOPS, with provisions to exploit any age 
sector of the population is presented. In  addition to the usual fish life history pattern, the 
model allows simulation of random mating, sex-differential maturation, and stepwise growth 
found in many crustacean and some fish populations. GXPOPS provides for monthly calcu- 
lations and all rates may be as general as month specific. The generality of the model is 
illustrated with an examination of closed season management strategies for a pandalid 
shrimp population. 

The advent of the  digital computer has allowed 
simulation modeling to become the current 
vogue within nearly all fields of science; fisher- 
ies is no exception. The computer has freed 
mathematically inclined scientists from being 
able to examine only equilibrium or cursory 
transitional states and from the need for ex- 
pressing relations in neat closed analytical 
forms. Numerical integration schemes and the 
speed of computation have made possible the 
examination of large systems of differential 
equations with feedback mechanisms, both from 
deterministic and stochastic standpoints. Even 
the simplest self-regenerating population mod- 
el of Beverton and Holt (1957), which may be 
regarded as a simulation model in that it has a 
feedback mechanism, is largely intractable for 
looking at transitional states and parameter 
variability*without the aid of a computer. 

Paulik (1969) gives a good review of simula- 
tion modeling in fisheries. He divided the mod- 
eling of fishery systems in an admittedly arbi- 
trary way into two categories, management 
models and scientific models, depending on the 
manner in which a model is utilized. Manage- 
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ment models are employed for decision making 
in evaluating or planning strategies for manage- 
ment purposes, while scientific models a re  con- 
structed to help elicit certain basic knowledge 
of a biological system. The actual implementa- 
tion of models in the two categories, however, 
should be similar in utilizing the model for 
planning, alternative evaluation, organization, 
and identifying sensitive areas of the system. 

There are at least two fishery simulation mod- 
els currently in existence which were designed 
to be generally applicable to most exploited 
populations. The most comprehensive is 
GAMES (Gales, 1972). This simulator has sev- 
en interacting sectors from the fish stock to 
the marketing of the final fish product, is  modu- 
lar in structure, and uses the most updated 
means of inputloutput. Unfortunately, GAMES 
is still in a state of development. The other 
simulator, POPSIM, was written by Walters 
(1969). POPSIM's major feature is an optimiza- 
tion routine for planning harvesting strategies 
for a number of harvesting periods. Both of 
these simulation models a re  easily adapted to 
the life history characteristics of fish popula- 
tions which have been traditionally studied in 
fisheries science. However, the FORTRAN IV 
computer simulation model, GXPOPS, was 
written to allow' additionally for the life history 
pattern of many crustaceans and some fishes 
that require actual copulation in reproduction 
and a sex-differentiated maturation schedule. 
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year class, i = 1. . . n, a n d j  = 1. . . 12. With 
natural and fishing mortality so general one 
can evaluate the effects of seasonal mortality 
patterns such as mass winter mortalities, closed 
seasons, etc. The coefficient A allows patterns 
of selectivity or seasonal availability, etc. to be 
incorporated. The average number alive of year 
class i during month j is given by 

MODEL STRUCTURE 

A flow-chart of GXPOPS indicating the op- 
tional life history sectors is presented in Fig- 
ure 1. Each sector is described by the equations 
below. The basic time period for calculations in 
GXPOPS is  monthly with all processes summed 
or averaged annually. There are three output 
options: 1) annual summaries only, 2) monthly 
and annual summaries by age class, and 3) 
monthly listings by age class as well as monthly 
and annual summaries. 

FIGURE 1.-Simplified flow chart of the computer pro- 
gram, GXPOPS. Boxes represent state variable compart- 
ments, solid lines represent material flows, dashed lines 
represent information flows, and circles represent regula- 
tory functions; CF = copulation function, FF = fishing 
mortality function, MF = sex specific maturation func- 
tion, and RF = recruitment function. 

Mortality 

Mortality may be age-specific on a monthly 
basis and is  assumed to be representable by an 
exponential decline such that 

with 

where Nii is the number of animals belonging 
to the ithyear class at the beginning of month 
j ,  Mjj is the instantaneous coefficient of nat- 
ural mortality, Au is an  availability multi- 
plier, Fij is the potential instantaneous coef- 
ficient of fishing mortality of a fully available 

Growth 

(3) 

The growth in weight of the animals is rep- 
resented by one of two options, the von Berta- 
lanffy growth equation or a linear segmental 
growth curve as in POPSIM (Walters, 1969). 
The von Bertalanffy formulation is 

-K(12i + i - 13 - to)  3 
wij= Wm[l-e 1 (4) 

where wij is the average weight of an  individ- 
ual in year class i at the beginning of the 
month j, and W, , K and to are parameters of 
the von Bertalanffy growth equation. The seg- 
mental growth option is formulated as 

w u = a  + b A t  (5) 

where a = wj,;-  1 ,b  = (w.. - w' 1 , J - 1 )  . and 
At = 1. Using the segmental option, any shape 
growth curve may be approximated, including 
the stepwise growth pattern of crustaceans and 
many temperate fishes and mollusks. 

U 

Yield 

Yield is computed monthly both in numbers 
and weight for each year class under either the 
von Bertalanffy or linear segmental growth 

'-yii = AijFijNij (6) 
option. - 

where YNij is the yield in numbers. Under the 
von Bertalanffy growth option, the yield in 
weight, Ywi i ,  is computed as 
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3 aue-uK(12i  + j - 13 - to) where t ,  and ti are  respectively the months 
that breeding begins and ends. 

Zij + UK The maturation fractions, Cp, are assumed 
to be constants in the present version of 

1 (i) GXPOPS. I t  is possible that the may be 
density-dependent in certain populations. One 

at equilibrium with the current version of 
GXPOPS, but it would be a simple matter to 
reprogram GXPOPS to examine the conse- 

= A..F..N..W, C ' W i j  U U U = 0 

-(Zij + uK) 
x [ l - e  

where 'U= - 3 y  3* - l ,  With a n  investigate the effect of differences in @ 

the linear segmental growth option 

Ywij = Y N . .  (wij  ( W i j  + 1 - W i j )  
I1 

quences of any functional hypotheses. 
(8) 

Equations (7) and (8) are modified for monthly 
calculations from Beverton and Holt's (1957)  
equations 4.4 and 9.5 respectively. 

Maturation 

A maturity schedule of the sexes is necessary 
to compute several relationships associated with 
the  reproductive sextor of GXPOPS. This is 
accomplished in the simulator with two vectors 
of age-specific values, one denoting the average 
fraction of mature males in each year class dur- 
ing the breeding season, ami, and the other 
denoting the female fractions, @ti. The mean 
number of mature males, N m j ,  and mean 
number of mature females, I f . ,  during month 
j of the spawning season are J 

and 

with 

where sj is the mean monthly sex ratio. The 
mean sex ratio for the breeding season is given 
bY 

Reproduction 

The major components of the reproduction 
sector of GXPOPS are copulation, egg-carrying 
(ovigerous period), and hatching. Fo r  the 
common spawing characteristics of freely cast- 
ing both spermatozoa and eggs, the copulation 
and ovigerous period sector may be bypassed. 

The traditional concept of fertilization success 
in fisheries population dynamics, excluding the 
salmonids, is described by Beverton and Holt 
(1957,  p. 6 1 )  as: 

. . . if there is free liberation of gametes, with sperma- 
tozoa greatly in excess of eggs, and especially if the 
percentage of successful fertilisations is fairly high, then 
the number of fertilised eggs would tend to be a con- 
stant fraction of the numbers laid. In addition, a large 
spawning population would tend to distribute eggs over 
a rather wider area than a small one, so that the num- 
ber of gametes per unit volume, which in such a situa- 
tion determines the rate of fertilisation, would not be 
expected to change much. 

Copulation is one mode of ensuring the fertiliza- 
tion of eggs in sexual reproduction. The success 
of fertilization, therefore, depends on the copu- 
lation rate which is at least some function of the 
sex ratio and density of the mature population. 
Beverton and Holt recognized this may be the 
case for a lobster population, in which copula- 
tion occurs. 

Copulation is a part of reproduction in most 
commercially exploited crustaceans, and some 
fishes. With the exception of salmonid studies, 
where a form of pseudocopulation occurs, popu- 
lation dynamics studies of commercial fisheries 
have ignored the  effects of exploitation on the  
rate of copulation. Conway (1969)  presents the 
most extensive quantitative treatment of repro- 
duction in insects, whose copulation parallels 
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that of many crustaceans. He recognizes three 
types of mathematical models for representing 
reproduction: 1) derivations from the Lotka- 
Volterra equations, 2) empirical models (essen- 
tially multiple regressions from data sets with 
a number of variables), and 3) structural models 
of the causal mechanisms likely to be involved. 

Derivations from the Lotka-Volterra equa- 
tions assume that if mating is random, then the 
rate of change of copulated females is propor- 
tional to  the expected rate of contact per fe- 
male times the number of uncopulated females. 
The rate of contact per female is assumed to be 
proportional to the number of males, giving 

dNF/dt = k,Nm(Nf - N;) (13) 

where * denotes copulated females and k ,  
is the coefficient of copulation. The copulation 
coefficient may be thought of as consisting of 
two multipliers - the instantaneous coefficient 
of males contacting females at random and the 
fraction of these encounters that result in copu- 
lation. Equation 13 has the solution 

or 
p = ( l - e  -kcNm 

where p is the fraction of mature females that, 
at the end of the breeding season (scaled to be 
of one unit length for convenience), have been 
copulated. Equation (14b) may also be derived 
probabilistically by assuming the number of 
copulations is Poisson distributed such that k ,  
is the mean rate of contact resulting in copula- 
tion per male, then 

with equation (14b), therefore, expressing the 
probability that at least one copulation per fe- 
male has occurred in one unit of time (Klomp, 
Montfort, and Tammes, 1964 [cited in Conway, 
19691). This assumes that the population is 
not aggregated but is randomly distributed over 
the breeding grounds regardless of the size of 
the population. Philip (1957) has also derived 

equation (14b) under slightly different circum- 
stances. Writing equation (14a) in terms of the 
sex ratio (males: females), s, and total mature 
population, N,, we have 

Therefore, as the total mature population de- 
creases, or as the sex ratio increases, the 
number of females being copulated with de- 
crease under this model, for reasonable values 
of s in the virgin state. 

With the aid of equation (15) one can easily 
follow the reasoning of Beverton’s and Holt’s 
conclusions for large, long-lived fish popula- 
tions with essentially a constant sex ratio. The 
maximum sustainable average yield (MSAY) 
in these populations is likely to occur at rela- 
tively low rates of fishing, hence there would 
be only a small reduction in population size 
from the virgin state. If k ,  were high, then 
the reduction in Nf* would be negligible. On 
the other hand, if the population is short-lived, 
the MSAY is likely to occur at a relatively 
lower population level. If fishing also increases 
the sex ratio, the deleterious effects on the size 
of N f *  are compounded. 

Equation (13) may be extended to become 
more realistic for a multiage population under 
exploitation. Often the mortality during breed- 
ing is neglected ; however, exploitation may in- 
crease the mortality significantly and the breed- 
ing season may be protracted. Therefore, with 
the additional assumption that males make no 
distinction between year classes of females, for 
any year class i during month j 

and 

Rewriting equation (16) in terms of the ratio of 
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copulated females to  total mature females, p f t ) ,  
giving 

In developing a reproduction model for in- 
sects, Conway (1969) criticized the first assump- 
tion as being unrealistic. Empirical evidence 
and biological induction suggest that the copu- 

ing to a maximum at some intermediate density 
and declining at very high densities owing to 
interference. Conway (1969) dismissed the sec- 
ond type of models (empirical) as lacking gen- 
erality for a critical examination of reproduc- 

Pj  = [1 - e . @miNij (1 - e ")/zij] (20) tion, and developed three structural models 
based on nearest neighbor distances. Given the 

-zijt 
n 

r = l  
dp(t) 'd t  = 'C .' 'miNile [' -p( t ) l ' ( lg )  lation rate should be concave downwards, ris- 

the solution obtained is 

-2. . -k 
1 = 1  

population size, density, and sex ratio, four 
with = (O, ') months and = Equation parameters are contained in his models as corn- 
(20) may be further simp1ified by substitution pared with only one for the simple model. Con- 

way fits each of his models to data obtained from equation (9) to give 

Therefore, the fraction of the females in any 
year class that a r e  copulated is  the same for all 
year classes provided that k ,  is not age spe- 
cific. Given the fraction copulated in the previous 
month, pj  - 1 [where p t  - 1 = 01, the fraction 
copulated at the end of the" monthj  is  

The total number of females in the population 
bearing fertile eggs at the end of the breeding 
season is then 

n 

i =  1 
N;;= Pti @flaitk,  (23) 

further assuming that one copulation results in 
fertilization. 

Recounting the assumptions implicit in the 
simple model, equation (23), they are: 

1. The instantaneous copulation rate per female 
is linear and proportional to the number of 
males. 

2. The copulation coefficient is independent of 
the age of the males and females. 

3. The copulation coefficient is independent of 
population size. 

4. A single copulation results in fertilization. 
5. Multiple copulations, if they occur, do not 

alter the fraction of each egg clutch that is 
fertilized from the  first copulation. 

from the literature on insects. The fits he ob- 
tained are hardly remarkable considering that 
four parameters were estimated, and a number 
given, for only eight points. However, the fits 
are an indication of the flexibility and possible 
validity of Conway's structural concepts-es- 
pecially since an  irregularity in the data with 
biological significance was predicted with the 
fitted model. The decline in copulation rate in 
the data, however, occurs at very high popula- 
tion densities. The major use of GXPOPS will 
likely be for examining the dynamics of popula- 
tions under exploitation, hence at less than vir- 
gin population densities. Also, since the two 
data sets given by Conway are adequately de- 
scribed by a straight line for the observations 
at population densities before the decline in 
copulation rate occurred, and lacking other em- 
pirical evidence to the contrary, equation (22) 
was adopted as the copulation model in 
GXPOPS. 

Many exploited animals carry their fertilized 
eggs so that the number of eggs reaching the 
hatching period is intimately tied to the sur- 
vival of the females during the ovigerous peri- 
od. If it is assumed that all female mortality 
results in the loss of the eggs as well, then the 
number of copulated females reaching the hatch- 
ing period is given by 

where th is the time at hatching. Instantaneous 
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where 1-11 and 1-12 are the density-independent 
and density-dependent larval mortality coef- 
ficients. Equation (26) integrates to 

hatching is assumed, so th represents the 
mean hatching time. 

Individual fecundity (eggs per female) is 
usually correlated with the size of the individ- 
ual. Many plots of fecundity on length appear 
to be concave upward, which indicates that 
fecundity is closely proportional to the weight 
of the individual. In  order to be more useful 
generally, however, fecundity in GXPOPS is 
represented by a vector of mean viable eggs per 
female at hatching by age class, Xi, such that 
the total number of larvae hatched, L h ,  is 
given by 

n 

i =  1 
Lh = P t i  Xj@flNith. (25) 

Recruitment 

Any equilibrium point achieved with the 
population model as now formulated is likely 
to be unstable, such that with a sustained in- 
crease or decrease in mortality the population 
will decrease to extinction or increase to in- 
finite size. Most successful natural populations 
are believed to achieve equilibrium through any 
of a number of homeostatic mechanisms asso- 
ciated with density-dependent reproduction or 
mortality. One such mechanism already men- 
tioned is a decrease in copulation rate at high 
densities. Others include a lack or destruction 
of oviposition sites at high densities as in insects 
or salmonid fishes, an overutilization or com- 
petition for a fixed food supply, cannibalism, 
predator-prey interactions, etc. The usual mode 
of population regulation assumed in fisheries 
studies is through density-dependent early 
stage (or larval) mortality. Treatises on this 
subject can be found in Ricker (1954, 1958) 
and Beverton and Holt (1957). 

Two models have been widely used in fishery 
population dynamics; GXPOPS allows the 
selection of one or the other. The first model, 
owing to Beverton and Holt (1957), states that 
the simplest assumption one can make is that 
the larval mortality coefficient can be expressed 
as a simple linear function of larval population 
size 

for the survival of larvae from month j - 1 to j .  
Collecting the constants we have 

Lj l / ( a 1 +  “21Lj - 

or 

for t ,  months of larval existence. Equation 
(28) is a concave downward function that in- 
creases monotonically with L .  for a constant 
period of larval existence and it approaches an I. 

t r -  1 
asymptote of C a i /a l  at an increasing 

r =  0 
rate as a2 increases. 

Thesecond model,owingtoRicker(1954,1958), 
simply assumes that the density-dependent co- 
efficient, 1-12, may operate only until some criti- 
cal size is reached and that the time to attain 
this critical size may be proportional to the 
size of the larval population at hatching, L h ,  
which gives 

or on integrating 

for t ,  months of larval existence. Equation 
(29) is also concave downwards, but monotoni- 
cally increases to a maximum at 
and then monotonically decreases approaching 
zero as Lh becomes infinite. 

Both equations (28) and (29) allow a popula- 
tion to achieve stability over a range of sustained 
mortality rates. Equation (29), additionally, 
will produce oscillations in the population 
(Beverton and Holt, 1957), the criteria for 
which are given by Paulik and Greenough (1966). 

Lh = 1 / p 2 ,  
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Constant recruitment of size l/al may be 
simulated with GXPOPS by selecting equation 
(28) and setting cy2 = 0. 

Timing in the Simulator 

Reference in this study is made to -a year di- 
vided into 12 mo because the reproductive cycles 
of many exploited fish populations are annual. 
I t  is just  as easy to consider the “year” as a 
reproductive cycle (16 days, 3 yr, etc.) divided 
into 12 time periods of equal length. 

The conventional notation, for numbering 
timestream entities, is for the initial or first 
instance to be denoted as 0. The computer, 
however, begins with 1 in executing “DO” 
loops, etc., therefore, the ordinal numbering 
system is used in GXPOPS. The first month 
and year are denoted as 1, as are the initial 
numbers and yields of the first month and 
year, and the young of the year. The simulator 
takes the hatching time, th ,  as time 1 (i.e., 
Lh = L1)  and the year is carried on a biologi- 
cal fiscal basis. For example, if hatching oc- 
curs on April 1, recruitment to the main popu- 
lation on July 1 of the first year of life, and 
breeding begins October 1 and ends December 
1; then 

th = I, t,. = 3, t, = 7,  and t,’ = 8, 

respectively. If recruitment does not occur 
until July 1 of the third year of life, then t, = 
27. 

EXAMPLE: A PANDALID SHRIMP 
POPULATION 

GXPOPS was designed to be useful for ex- 
amining the responses of many life history pat- 
terns to exploitation. The impetus, however, 
was to examine the response to exploitation 
of a pandalid shrimp life history (Fox, 1972). 
Pandalid shrimps are protandric hermaphro- 
dites-i.e., individuals mature as males but 
later transform to function as females (Berke- 
ley, 1930), fertilization is accomplished through 
copulation, the females carry fertilized eggs 3-9 
mo until hatching, and they exhibit pronounced 

stepwise growth. While the extensive simula- 
tion studies investigating the effects and man- 
agement implications of all sectors of the 
pandalid shrimp model will be published subse- 
quently, one particular study of the effect of 
season length on the simulated fishery is useful 
for illustrating the utility of GXPOPS. 

Table 1 contains the parameters of the simu- 
lated pandalid shrimp population which 1) 
consists of six year classes, 2) is fully recruited 
to the fishable population during the third year 
of life (at 2 yr  old), 3) breeds over ‘2 mo, 4) 
carries its eggs 5% mo until hatching, 5 )  re- 
cruits to the main population during the fourth 
month of life (3 mo after hatching), 6) matures 
as males during the third year of life (at 2 y r  
old), and 7) trandforms into females during the 
fourth year of life (at 3 y r  old). The stepwise 
growth in weight is given in Figure 2. 

Exploiting the simulated pandalid shrimp 
produced the relationship between equilibrium 
yield and fishing effort (= instantaneous fish- 
ing mortality coefficient since the catchability 
coefficient was assumed to be 1.0) given in Fig- 
ure 3. An equilibrium yield was achieved with 
fishing effort up to 1.4, with the maximum 
equilibrium yield occurring at about 1.0. Fish- 
ing above a level of 1.4 did not result in equil- 
ibrium within 25 yr  of simulated fishing, and 
continued fishing somewhere between 1.4 and 
2.0 would eventually result in extinguishing 
the population. By not including the effect of 
random mating (copulation), i.e., h, = m, 

the simulated population achieved equilibrium 
out to nearly F = 1.8 (Fox, 1972). This exhibits 
some need for considering the implications of 
copulation success in evaluating management 
alternatives. 

The equilibrium yields given in Figure 3 are 
for an annual pandalid shrimp fishery. Several 
states, however, have closed seasons during that 
part of the year when females are carrying 
fertilized eggs - ovigerous period - (Dahl- 
strom, 1970). For the simulated pandalid shrimp 
population, the ovigerous period lasts 6 mo 
(months 7-12). I t  is of interest to compare the 
results of the closed ovigerous season strategy 
with other possible season lengths, all begin- 
ning subsequent to hatching and running con- 
tinuously until reaching the closed season. 
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T ~ ~ ~ ~ - l . - - P a r a m e t e r s  of the simulated pandalid shrimp population. 

Parameter Symbol Value 

1 .  Number of year classes n 

2. Instantaneous natural mortality coefficient 

3 .  Availability multipliers 

4. Month breeding begins 

5.  Month breeding ends 

6. Year of first maturity 

7.  Age (mo) at first recruitment 

8. Copulation coefficient 

9. Recruitment parameters of the Beverton 
and Holt model 

IO. Fecundity coefficients 

1 I .  Male maturity fractions 

12. Female maturity fractions 

1 

6 ( i  = 1.6) 

0.06 (for a11 i and j )  

0.0 (for 1 < 3)  
1 .O ( f o r i  2 3)  

7 

8 

3 

4 

10-9 

3.2851 X IO-" 
1.01 

0.0 (for f = 1.3) 
1314 (for = 4) 
1679 (for i = 5)  
1997 (for f = 6) 

0.0 for i = 1 ,  2 and 4-6 
1 .O for i = 3 
0.0 for I = 1-3 
1 .O for I = 4-6 

OO 5 I 2 3 4 5 6 

AGE ( y e a r s )  

FIGURE 2.-Arbitrary growth curve exhibiting the step- 
wise growth pattern of pandalid shrimps. 

The simulated pandalid shrimp population 
was fished for six different season lengths, 
from 12 to 2 mo after the hatching period (Ta- 
ble 2). The maximum equilibrium yield for 
each season length occurred with an annual 
fishing mortality coefficient, F, of 1.0. This 
means that the monthly fishing effort must in- 
crease proportionally to the  inverse of the  sea- 
son length to obtain the maximum equilibrium 
yield (column 2, Table 2). Of those seasons 
simulated, the greatest equilibrium yield and 

catch per unit effort were obtained with the 8- 
mo season (columns 3 and 4, Table 2) .  Com- 
pared with an annual fishery, however, the 8- 
mo season resulted in a 5% decrease in the aver- 
age weight of a shrimp in the catch (column 5, 
Table 2). The 6-mo season (closure during the 
breeding, ovigerous, and hatching periods) was 
only slightly less than the 8-mo season in yield 
and catch per unit effort, but it was better than 
the annual fishery. However, there was an 11% 

\ ii 00 0 2  0 4  06 08 I O  12 14 16 18 \ 2 0  

FISHING EFFORT 

FIGURE 3.-Relationship between equilibrium yield and 
fishing effort for the simulated pandalid shrimp population. 
Dashed line represents nonequilibrium region. 
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TABLE 2,Effect of season length, beginning subsequent to hatching, on maximum equilibrium yield and allied fishery 
parameters for the simulated pandalid shrimp population. 

( 1 )  
Season 
length 

(months) 

(2)  
Monthly 
fishina 

( 3) 
Season 
yield in 
weight 

( 4) (5) ( 6) 
Average Average 8reeding 
monthly individual success 

cotchleffort weight (percent) 

12 1 .o 5.60 X IOy 0.467 X IOy 3.7 

8 1.5 5.70 x 109 0.475 X 10’ 3.5 
6 2.0 5.67 X IOy 0.472 X IOy 3.3 

10 1.2 5.68 X IOs 0.474 X IOy 3.6 

4 3.0 5.63 X loy 0.469 X IOy 3.1 
2 6.0 5.57 x 109 0.464 X IO9 2.9 

85.5 
82.0 
76.1 
71.3 
71.3 
71.3 

decrease in average weight as compared to the 
annual fishery. The breeding success, defined 
as the fraction of available eggs which are fer- 
tilized, declined with the season length until a 
6-mo season was reached. 

An unknown factor not programmed into the 
simulation model, however, is the effect of 
trawling on the behavior of the shrimp during 
breeding or on the possibility of causing dis- 
lodgement of the egg clutches and a subsequent 
higher mortality rate. In  view of these uncer- 
tainties, the adoption of a 6-mo season from 
hatching to the onset of breeding, as several 
states have, appears to be a biologically pru- 
dent approach for a natural population similar 
to the simulated population. The 6-mo season 
is only slightly lower in maximum equilibrium 
yield, catch per unit effort, and average size 
than the optimal 8-mo season, but is better 
than the annual fishery in the first two cate- 
gories. The actual implementation of a 6-mo 
season on an annual fishery, however, would 
have to weigh socioeconomic factors because 
the maximum yield is obtained with twice the 
amount of fishing effort per month as compared 

be used also to evaluate the expected transition- 
al states from an  annual fishery to a seasonal 
closure fishery as well as the expected equilib- 
rium results discussed here. A socioeconomically 
feasible strategy, then, may be determined 
given the current state of the fishery. 

PROGRAM AVAILABILITY 

A listing and card set-up documentation for 
program GXPOPS are available on request 
from the author. 
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